伺服驱动器(servo drives)又称为“伺服控制器”、“伺服放大器”,是用来控制伺服电机的一种控制器,其作用类似于变频器作用于普通交流马达,属于伺服系统的一部分,主要使用在于高精度的定位系统。一般是通过位置、速度和力矩三种方式对伺服电机来控制,实现高精度的传动系统定位,目前是传动技术的高端产品。
伺服驱动器是现代运动控制的重要组成部分,被大范围的应用于工业机器人及数控加工中心等自动化设备中。尤其是应用于控制交流永磁同步电机的伺服驱动器慢慢的变成了国内外研究热点。当前交流伺服驱动器设计中普遍采用基于矢量控制的电流、速度、位置3闭环控制算法。该算法中速度闭环设计合理与否,对于整个伺服控制管理系统,特别是速度控制性能的发挥起到关键作用 [1] 。
在伺服驱动器速度闭环中,电机转子实时速度测量精度对于改善速度环的转速控制动静态特性至关重要。为寻求测量精度与系统成本的平衡,一般都会采用增量式光电编码器作为测速传感器,与其对应的常用测速方法为M/T测速法。M/T测速法虽然具有一定的测量精度和较宽的测量范围,但这种方法有其固有的缺陷,最重要的包含:1)测速周期内必须检测到至少一个完整的码盘脉冲,限制了最低可测转速;2)用于测速的2个控制管理系统定时器开关难以严格保持同步,在速度变化较大的测量场合中没办法保证测速精度。因此应用该测速法的传统速度环设计的具体方案难以提高伺服驱动器速度跟随与控制性能 。
可以实现很复杂的控制算法,实现数字化、网络化和智能化。功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检验测试保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。功率驱动单元首先通过三相全桥整流电路对输入的三相电或者市电进行整流,得到相应的直流电。经过整流好的三相电或市电,再通过三相正弦PWM电压型逆变器变频来驱动三相永磁式同步交流伺服电机。功率驱动单元的整一个完整的过程可以简单的说就是AC-DC-AC的过程。整流单元(AC-DC)主要的拓扑电路是三相全桥不控整流电路。
随着伺服系统的大规模应用,伺服驱动器使用、伺服驱动器调试、伺服驱动器维修都是伺服驱动器在当今较为重要的技术课题,慢慢的变多工控技术服务商对伺服驱动器进行了技术深层次研究。
伺服驱动器是现代运动控制的重要组成部分,被大范围的应用于工业机器人及数控加工中心等自动化设备中。尤其是应用于控制交流永磁同步电机的伺服驱动器慢慢的变成了国内外研究热点。当前交流伺服驱动器设计中普遍采用基于矢量控制的电流、速度、位置3闭环控制算法。该算法中速度闭环设计合理与否,对于整个伺服控制管理系统,特别是速度控制性能的发挥起到关键作用。
为了保证生产率和加工质量,除了要求有较高的定位精度外,还要求有良好的快速响应特性,即要求跟踪指令信号的响应要快,因为数控系统在启动、制动时,要求加、减加速度足够大,缩短进给系统的过渡过程时间,减小轮廓过渡误差。
一般来说,伺服驱动器具有数分钟甚至半小时内1.5倍以上的过载能力,在短时间内可以过载4~6倍而不损坏。
要求数字控制机床的进给驱动系统可靠性高、工作稳定性高,具有较强的温度、湿度、振动等环境适应能力和很强的抗干扰的能力。
1、从最低速到最高速电机都能平稳运转,转矩波动要小,尤其在低速如0.1r/min或更低速时,仍有平稳的速度而无爬行现象。
2、电机应具有大的较长时间的过载能力,以满足低速大转矩的要求。一般直流伺服电机要求在数分钟内过载4~6倍而不损坏。
3、为满足快速响应的要求,电机应有较小的转动惯量和大的堵转转矩,并具有尽可能小的时间常数和启动电压。
目前,伺服驱动器的测试平台主要有以下几种:采用伺服驱动器电动机互馈对拖的测试平台、采用可调模拟负载的测试平台、采用有执行电机而没有负载的测试平台、采用执行电机拖动固有负载的测试平台和采用在线测试方法的测试平台 。
这种检测系统由四部分所组成,分别是三相PWM整流器、被测伺服驱动器电动机系统、负载伺服驱动器电动机系统及上位机,其中两台电动机通过联轴器互相连接。被测电动机工作于电动状态,负载电动机工作于发电状态。被测伺服驱动器电动机系统工作于速度闭环状态,用来控制整个测试平台的转速,负载伺服驱动器电动机系统工作于转矩闭环状态,经过控制负载电动机的电流来改变负载电动机的转矩大小,模拟被测电机的负载变化,这样互馈对拖测试平台能轻松实现速度和转矩的灵活调节,完成各种试验功能测试。上位机用于监控总系统的运行,根据试验要求向两台伺服驱动器发出控制指令,同时接收它们的运行数据,并对数据来进行保存、分析与显示。
对于这种检测系统,采用高性能的矢量控制方式对被测电动机和负载设备分别进行速度和转矩控制,即可模拟各种负载情况下伺服驱动器的动、静态性能,完成对伺服驱动器的全面而准确的测试。但由于使用了两套伺服驱动器电动机系统,所以这种检测系统体积非常庞大,不能够满足便携式的要求,而且系统的测量和控制电路也很复杂、成本也很高。
这种检测系统由三部分所组成,分别是被测伺服驱动器电动机系统、可调模拟负载及上位机。可调模拟负载如磁粉制动器、电力测功机等,它和被测电动机同轴相连。上位机和数据采集卡通过控制可调模拟负载来控制负载转矩,同时采集伺服系统的运行数据,并对数据来进行保存、分析与显示。对于这种检测系统,通过对可调模拟负载来控制,也可模拟各种负载情况下伺服驱动器的动、静态性能,完成对伺服驱动器的全面而准确的测试。但这种检测系统体积仍然比较大,不能够满足便携式的要求,而且系统的测量和控制电路也很复杂、成本也很高。
这种检测系统由两部分组成,分别是被测伺服驱动器电动机系统和上位机。上位机将速度指令信号发送给伺服驱动器,伺服驱动器按照指令开始运行。在运行过程中,上位机和数据采集电路采集伺服系统的运行数据,并对数据来进行保存、分析与显示。由于这种检测系统中电机不带负载,所以与前面两种检测系统相比,该系统体积相对减小,而且系统的测量和控制电路也最简单,但是这也使得该系统不能模拟伺服驱动器的实际运作情况。通常情况下,此类检测系统仅用于被测系统在空载情况下的转速和角位移的测试,而不能对伺服驱动器做全面而准确的测试。
这种检测系统由三部分所组成,分别是被测伺服驱动器电动机系统、系统固有负载及上位机。上位机将速度指令信号发送给伺服驱动器,伺服系统按照指令开始运行。在运行过程中,上位机和数据采集电路采集伺服系统的运行数据,并对数据来进行保存、分析与显示。
对于这种检测系统,负载采用被测系统的固有负载,因此测试过程贴近于伺服驱动器的实际在做的工作情况,测试结果比较准确。但由于有的被测系统的固有负载不方便从装备上移走,因此测试过程只能在装备上进行,不是很方便。
这种检测系统只有数据采集系统和数据处理单元。数字采集系统将伺服驱动器在装备中的实时运作时的状态信号进行采集和调理,然后送给数据处理单元供其做处理和分析,最终由数据处理单元做出测试结论。由于采用在线测试方法,因此这种检测系统结构最简单,而且不用将伺服驱动器从装备中分离出来,使测试更加便利。此类检测系统完全根据伺服驱动器在实际运行中来测试,因此测试结论更加贴近真实的情况。但是由于许多伺服驱动器在制造和装配方面的特点,此类检测系统中的各种传感器及信号测量元件的安装的地方很难选择。而且装备中的其它部分假如慢慢的出现故障,也会给伺服驱动器的工作状态造成不好影响,最终影响其测试结果。
伺服驱动器简单地说:是用来控制伺服电机的一种控制器,其作用类似于变频器作用于普通交流马达,属于伺服系统的一部分,主要使用在于高精度的定位系统。一般是通过位置、速度和力矩三种方式对伺服马达来控制,实现高精度的传动系统定位,目前是传动技术的高端产品。下面本文就为大家介绍一下伺服驱动器的工作原理。
伺服驱动器均采用数字信号处理器(DSP)作为控制核心,能轻松实现很复杂的控制算法,实现数字化、网络化和智能化;功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检验测试保护电路,在主回路中还加入了软启动电路,以减小启动过程对驱动器的冲击。
首先功率驱动单元通过三相全桥整流电路对输入的三相电或者市电进行整流,得到相应的直流电。经过整流好的三相电或市电,再通过三相正弦PWM电压型逆变器变频来驱动交流伺服电机。功率驱动单元的整一个完整的过程可以简单的说就是AC-DC-AC的过程,整流单元(AC-DC)主要的拓扑电路是三相全桥不控整流电路。伺服驱动器一般都有三种控制方式:位置控制方式、转矩控制方式、速度控制方式。位置控制位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服能够最终靠通讯方式直接对速度和位移进行赋值,由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。
转矩控制转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,能够最终靠即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的手里有严格要求的缠绕和放卷的装置中,例如绕线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。
速度模式通过模拟量的输入或脉冲的频率都能够直接进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也能够直接进行定位,但必须把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点是能够大大减少中间传动过程中的误差,增加了总系统的定位精度。
■如果对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。
■ 如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。
■ 如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点,如果本身要求不是很高,或者基本没实时性的要求,采用位置控制方式。伺服进给系统的要求
PID控制器(比例-积分-微分控制器)是一个在工业控制应用中常见的反馈回路部件,由比例单元P、积分单元I和微分单元D组成。PID控制的基础是比例控制;积分控制可消除稳态误差,但可能增加超调;微分控制可加快大惯性系统响应速度以及减弱超调趋势。)